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Abstract

The temperature distribution of a thermoelectric cooler under the influence of the Thomson effect, the Joule heating,

the Fourier�s heat conduction, and the radiation and convection heat transfer is derived. The influence of the Thomson

effect on the temperature profiles, on the fraction of the Joule�s heat that flows back to the low-temperature side, and

consequently on the maximum attainable temperature difference and the maximum allowable heat load are emphasized

and explored. The results suggest that the cooling efficiency of a thermoelectric cooler can be improved not only by

increasing the figure-of-merit of the thermoelectric materials but also by taking advantage of the Thomson effect. A

possible development direction for the thermoelectric materials is thus given.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A thermoelectric cooler pumps heat, when the elec-

tricity is applied, from a low temperature reservoir to

a high temperature reservoir through the Peltier effect

[1]. Compared to the traditional heat pumps, the ther-

moelectric cooler has the advantages of compact, high

reliability, low maintenance fee, no vibration and easy

control (because of no moving parts), no refrigerants

and direct electric energy conversion. The major prob-

lem of thermoelectric devices is poor cooling efficiency.

This is fundamentally limited by the material properties

of the n- and p-type semiconductors, regardless how cle-
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ver the device has been engineered. The performance of

a thermoelectric material is measured by a dimensionless

thermoelectric parameter, usually written as ZT, where

T is the temperature (usually the room temperature)

and Z characterizes the material�s electric and thermal

transport properties and is commonly named as the fig-

ure of merit of the material. The commonly known ther-

moelectric materials have ZT values between about 0.6

and 1.0. Different efforts have been made to produce

semiconductor materials with large Seebeck coefficients,

good electrical conductivity, and poor thermal conduc-

tivity [2–5].

It is worthy to note here that most previous investiga-

tions [6–8] of the thermoelectric coolers considered only

the Fourier�s heat conduction and the Joule�s heating.

The radiation and convection heat transfers between

the semiconductors and the ambient gas are found not
ed.
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negligible for micro-coolers [7,8]. Little attention how-

ever has been paid to the influence of the Thomson effect

(charge carriers must release or absorb heat in order to

overcome the non-homogeneity caused by the tempera-

ture gradients in the semiconductors) until recently

[9,10]. In the present work, the influence of the Thomson

effect on the performance of a thermoelectric cooler,

such as its maximum attainable temperature difference

and maximum allowable heat load, is of interest and

investigated. These results provide the theoretical bases

for the possible development of thermoelectric materials

and for an optimal design of a thermoelectric cooler.
2. Thermal model

The basic unit of a thermoelectric cooler (TE cooler)

is a thermocouple composed primarily of an n-type and

a p-type semiconductor element placed electrically in

series and thermally in parallel, as shown in Fig. 1.

The attempt is to pump heat from the cold side (x = 0)

through the Peltier heat, transfer it to the hot side

(x = L) by current, and finally release it to the ambient

by some external cooling device. The cooling power

however cannot be as large as the Peltier heat pumping

rate, because additional heat sources such as the Joule�s
dissipation heat and the Thomson heat are generated

and heat will diffuse back to the cold side through the

Fourier�s heat conduction. In the present study, a one-

dimensional analysis will be employed, which is proper

when the length of the beam is sufficiently larger than

its width and thickness. According to the nonequilib-

rium thermodynamics, the steady temperature distribu-

tion T(x) is governed by

0 ¼ d

dx
kA

dT
dx

� �
þ e2ej

2
e

r
A� d

dx
ðbeejeTAÞ � cP ðT � T1Þ

ð1Þ

Terms on the right-hand-side represent respectively

the net axial thermal conduction heat transfer rate, the

Joule�s heat generation rate, the Thomson heat genera-

tion rate, and the thermal radiation and convection heat
Fig. 1. Schematic diagram of
transfer rates. Symbols k and r represent the thermal

and electrical conductivities; ee and je are the electron

charge and flux (therefore the current is I = Aee je); b
is the Thomson coefficient; A and P are the local

cross-sectional area and perimeter of the semiconductor

element. The sign of the term associated with the Thom-

son heat depends on the current direction. It is a minus if

the current flows in the positive x-direction (the p-type

element in Fig. 1); and a plus otherwise (n-type). Finally,

the radiation heat transfer rate has been linearized under

the assumption of small temperature difference and com-

bined with the convection heat transfer coefficient h such

that c � 4erBT 3
1 þ h, where e, rB, and T1 are the emis-

sivity, the Stefan–Boltzman constant, and the ambient

gas temperature.

Further simplifications can be made by assuming

constant properties (k, b, and r), constant A and P,

and constant current I. Emphasized is the assumption

of constant Thomson coefficient. By definition, the

Thomson coefficient b is related to the Seebeck coeffi-

cient a by

b ¼ T
oa
oT

� �
p

ð2Þ

where the subscription ‘‘p’’ represents a constant pres-

sure condition under which the derivative is taken.

Therefore, a constant Seebeck coefficient means an ab-

sence of the Thomson effect. On the other hand, a con-

stant Thomson coefficient implies a Seebeck coefficient

having a logarithm dependence on the temperature.

2.1. Thomson effect on the temperature profiles

With the boundary conditions T(0) = Tc and

T(L) = Th, the solution of Eq. (1) is

Hðx�Þ ¼ ej1x
� � ej2x

�

ej1 � ej2

þHc

ð1� ej2Þej1x� � ð1� ej1Þej2x�

ej1 � ej2

� �

þ W
P � 1� ð1� ej2Þej1x� � ð1� ej1Þej2x�

ej1 � ej2

� �
ð3Þ
a thermoelectric cooler.
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where x* � x/L, H � (T�T1)/DT, Hc = (Tc�T1)/DT,
DT � Th�Tc, P

� � PcL/K, and W � I2R/KDT. Symbols

R � L/rA and K � kA/L are the electric resistance and

thermal conductance of thermoelement. The dimension-

less parameters j1 and j2 are the two distinct real roots

of

0 ¼ j2 � nj� P � ð4Þ

with n � bI/K representing the ratio of Thomson heat to

the conduction heat. Noticed is that the parameters j1
and j2 are now both functions of the operating current

I because of the Thomson effect.

To highlight the influence of the Thomson effect on

the temperature distribution, we choose c = 0 for the

time being. The two roots of Eq. (4) are then ±n and 0

and the temperature distribution becomes

T ðxÞ � T c

T h � T c

¼ ð1� fÞ �
1� exp �n x

L

� �
1� expð�nÞ � f

x
L

ð5Þ

for the p-type/n-type element with f�I2R/bIDT being the

ratio of Joule�s heat to the Thomson heat. Noticed is

that two influence dimensionless parameters, n and f,
appear separately, unlike the case when the Thomson

effect is ignored and the temperature profile is then

T ðxÞ � T c

T h � T c

¼ 1

2
nf

x
L
� x2

L2

� �
þ x
L

ð6Þ

where nf = W is the ratio of the Joule�s heat to the con-

duction heat. Shown in Fig. 2 are temperature profiles of

the p-type element under several values of the Thomson

coefficients. As seen, when the Thomson coefficient is

negative (bp < 0), the temperature near the cold side is

increased by the Thomson heat released by the charge

carriers. This temperature rise will make a reduction in

the cooling power of the TE cooler. On the other hand,

if bp > 0, the temperature gradient is everywhere positive

and charge carriers absorb heat all the way as the cur-
Fig. 2. The influence of Thomson effect on the temperature

profiles where W = 2 and �6 6 np 6 6 are chosen.
rent moves from x = 0 to x = L. This implies that most

of the Joule�s heat and the Fourier�s conduction heat

are luckily absorbed and carried to the hot side by the

charge carriers. Therefore, for the sake of improving

the cooling power, a TE cooler should employ a p-type

(n-type) semiconductor material with a positively (nega-

tively) large Thomson coefficient, in addition to a low

electric resistance and a low thermal conductance.

2.2. Thomson effect on the cooling power

The cooling power (qc) is the net heat flow rate out of

the cold side and is computed as

qc ¼ apNðT cÞIT c � kpAp

dT p

dx
ð0Þ � knAn

dT n

dx
ð0Þ ð7Þ

where apN � ap � an, and subscriptions p and n repre-

sent p-type and n-type materials respectively. Using

Eq. (3), it can be shown that the cooling power is equal

to

qc ¼ apNðT cÞIT c � eK ðT h � T cÞ � eH ðT1 � T cÞ � I2eR;
ð8Þ

where

eK � Kpf ðjp1; jp2Þ þ Knf ðjn1; jn2Þ ð9Þ

eH � Kpgðjp1; jp2Þ þ Kngðjn1; jn2Þ ð10Þ

eR � Rphðjp1; jp2Þ þ Rnhðjn1; jn2Þ ð11Þ

and functions f, g, and h are defined as

f ðj1; j2Þ �
j1 � j2

ej1 � ej2
ð12Þ

gðj1; j2Þ �
j1e

j2 � j2e
j1

ej1 � ej2
� f ðj1; j2Þ ð13Þ

hðj1; j2Þ � � gðj1; j2Þ
j1j2

ð14Þ

Firstly of all, it is noticed that the fraction of Joule�s
heat flowing to the cold side is no longer one half as

usual when no Thomson effect is concerned. Instead, it

is determined by the function h(j1,j2) which ranges be-

tween 0 and 1. The influence of the radiation and con-

vection heat transfer lies not only in eH but also in eK
and eR because j1 and j2 are also functions of c as ob-

served from Eq. (4).

Again, to illuminate the Thomson effect, we stick to

cases in which c = 0. In those cases, eH ¼ 0 and the

so-called herein modified thermal conductance eK and

the modified electric resistance eR become

eK ¼ KpgKðnpÞ þ KngKð�nnÞ ð15Þ

eR ¼ RpgRðnpÞ þ RngRð�nnÞ ð16Þ



Fig. 3. The dependence of gK and gR on the dimensionless

operating current n.
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where

gKðnÞ ¼
n

en � 1
� 1� n

2
as n � 1 ð17Þ

gRðnÞ ¼
1

1� en
þ 1

n
� 1

2
� n
12

as n � 1: ð18Þ

A value of gK greater than one implies the additional

(Thomson) heat that must diffuse to the cold side

through the Fourier�s conduction. The value of gR
(0 6 gR 6 1) on the other hand tells the fraction of

Joule�s heat that will flow to the cold side. Fig. 3 shows

the dependence of gK and gR on n, the operating current

nondimensionalized in terms of the thermal conductance

and the Thomson coefficient. It is seen that both the

modified thermal conductance and the modified electric

resistance can be significantly reduced by properly

choosing semiconductor materials with bp > 0 and

bn < 0.
Fig. 4. The maximum attainable temperature difference

ZDTmax versus ZTc. Values of a/b range in a geometric

progression with a ratio of 1.6 starting from 0.2. The dotted

curve is the one corresponding to b = 0 (or a/b = 1).
3. Performance

Given a temperature difference DT = Th � Tc, there

may exist some optimum operating current that maxi-

mizes qc. The maximum attainable temperature differ-

ence DTmax is the temperature difference when the

corresponding maximum qc is zero. And the maximum

allowable heat load Nmax is defined as the maximum

cooling power when DT = 0. The involved algebra is a

little troublesome because the modified thermal con-

ductance and modified electric resistance are now func-

tions of I. For simplicity and for the sake of

illuminating the Thomson effect, c = 0 is assumed again.

Also assumed is that the p-type and n-type materials
have the same constant thermoelectric properties except

that apn(Tc) = 2a(Tc) > 0 and bp = �bn = b > 0.

3.1. Maximum attainable temperature difference

After some algebra, it can be shown that the maxi-

mum attainable temperature difference DTmax and the

corresponding optimum operating current Iopt.T are

determined by

ZT c ¼
a
b
ð1� e�nopt:T Þ ð19Þ

ZDTmax ¼
a2

b2
ðnopt:T þ e�nopt:T � 1Þ ð20Þ

where nopt.T = bIopt.T/K and Z = ra2/k is the Figure-of-

Merit evaluated at Tc. The influence of the Thomson

effect can be explained in the following way. Given Tc

and a (Tc), Eq. (19) gives the b-dependent optimum

dimensionless operating current and Eq. (20) in turn

gives the maximum attainable temperature difference.

Moreover, from Eq. (19), it is seen that when ZTc is less

than the value of a/b (or Tc is less than k/rab), there exists
an nopt.T with a corresponding maximum attain-

able temperature difference. Otherwise, there exists no

so-called optimum operating current and there is no limit

on the temperature difference. This is because most of the

Joule�s heat will just be absorbed as Thomson heat and

carried to the hot side by the current, becoming not an

obstacle in creating the desired temperature difference.

All of the above are illustrated in Fig. 4. In remark, both

parameters, ZTc and a/b, play roles in determining the

performance of a thermoelectric cooler.



Fig. 6. The allowable heat load under the constraint DT = 0 as

a function of the operating current for various values of

ZTh b/a.
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3.2. Maximum allowable heat load

Using Eqs. (8) and (15)–(18), the maximum allowable

heat load Nmax can be found to be

b2

a2
N �

max ¼
2n2opt:N

ð1� enopt:N Þ 1þ nopt:Ne
nopt:N

ð1� enopt:NÞ

� �
ð21Þ

b
a
ZT h ¼ 1þ 2nopt:N

1� enopt:N
þ

n2opt:Ne
nopt:N

ð1� enopt:NÞ2
ð22Þ

where N �
max � ZNmax=K and nopt.N � b Iopt.N/K (the opti-

mum dimensionless operating current that results in a

maximum allowable heat load), and is shown in Fig. 5.

A careful examination of Eq. (21) finds that there exist

two critical values of ZThb/a, namely ZThb/a = 1 and

ZThb/a � 1.18. When ZThb/a 6 1, there exists an opti-

mum operating current nopt.N and a corresponding max-

imum heat load N �
max. As 1 < ZThb/a < 1.18, there is a

local maximum heat load at some operating current

and a local minimum heat load at some larger operating

current. As the operating current becomes even larger,

the allowable heat load increases monotonically. These

local extremes are presented by the two branches

in the region of 1 < ZThb/a < 1.18 in Fig. 5. When

ZThb/a > 1.18, the heat load increases monotonically

with the operating current and there exists thus no so-

called maximum allowable heat load. All of the above

situations are shown in Fig. 6, in which the dimension-

less heat load, N� = ZN/K, is plotted as a function of

the dimensionless operating current under the constraint

DT = 0 for several values of ZThb/a.
It is not so obvious however why the Thomson effect

can enhance the cooling power since the total Thomson

heat carried away by the current is in fact zero

(bIDT = 0). Recalled is that the Thomson effect can
Fig. 5. The extreme values of allowable heat load under the

constraint DT = 0 versus ZThb/a. Dotted line is the result

without considering Thomson effect.
change the temperature profiles (as investigated in Sec-

tion 2.1) and therefore direct a major portion of the

Joule�s heat flowing to the hot side (in the sense that

charge carriers absorb heat near the cold side and release

the same amount of heat in the neighborhood of the hot

side). The cooling power is thus increased. When the

Thomson effect is sufficiently strong (ZThb/a > 1), the

fraction of Joule�s heat and the Fourier�s conduction

heat flowing to the cold side become negligible and con-

sequently the cooling power (or the allowable heat load)

can be made almost equal to the Peltier heat, which is in

turn proportional to the operating current. This limiting

behavior however can be only slowly approached as seen

from Fig. 3 or from Eq. (18) (i.e. gR � 1/n as n	 1.)
4. Illustration

At the end of this paper, we illustrate the present

analysis by an example. The properties of the p-type

and n-type elements are so chosen [7,8] that, rp =
rn = 0.1 (lXm)�1, kp = kn = 1.6W/mK, ap = �an = a,
and finally bp = �bn = b > 0. The geometry is chosen

to be Lp = Ln = 1mm, Pp = Pn = 0.4mm, and Ap = An =

0.01mm2 The radiation-convection heat transfer coeffi-

cient is c = 50W/m2K (a reasonable value for air at nor-

mal atmosphere). The ambient temperature T1 is taken

to be 300K.

Fig. 7 shows the temperature difference as a function

of the operating current when no heat load is applied.

The cold-side temperature is fixed at 250K and

a(Tc) = 185lV/K is assumed. As seen, when the Thom-

son effect is ignored, the optimum current is about

0.051A and the maximum temperature difference is

about 55K. The value of 2DTmax/Tc is about 0.44, which



Fig. 7. The attained temperature difference versus the operating

current under no heat load. The Thomson coefficients are given

in lV/K.
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is smaller than ZTc�0.53 because of the convection and

radiation effect. The maximum attainable temperature

difference is seen to increase with increasing Thomson

coefficient. It is about 114K (2DTmax/Tc�0.91) when

b = 200lV/K. Finally, the temperature difference be-

comes unlimited when b is slightly larger than the critical

value of k/raTc � 346lV/K.
5. Conclusion

A one-dimensional thermal analysis for the perform-

ance of thermoelectric cooler has been conducted under

the influence of the Thomson effect, the Joule heating,

the Fourier�s heat conduction, and the radiation and

convection heat transfer. The temperature distribution

and the cooling power are analytically derived. For

those cases that the Thomson effect is important, two

dimensionless influence parameters, i.e., the ratio of

the Thomson heat to the conduction heat and the ratio

of Joule�s heat to the Thomson heat, play roles. Both of

the temperature distribution and the cooling power are

affected by the Thomson effect. The fraction of both

Fourier�s conduction heat and Joule�s heat that flows

back to the cold side can be significantly reduced. It re-

sults in higher values of maximum attainable tempera-

ture difference and the maximum allowable heat load,

providing that the thermoelectric cooler has p-type (n-

type) semiconductor material with the positive (nega-

tive) Thomson coefficient.

Although a material with a significant Thomson ef-

fect is still limited due to the material capability at the

present time, however this paper has highlighted a pos-

sible development direction for the thermoelectric mate-

rials in the future. For example, it was shown [11] that
the Seebeck coefficient of a one-band (parabolic band)

bulk material is determined by

a ¼ � kB
e

5F 3=2

3F 1=2

� f�
� �

ð23Þ

where f� = f�(T) is the Fermi energy nondimensionalized

by kBT and

F i ¼ F iðf�Þ ¼
Z 1

0

xidx
expðx� f�Þ þ 1

ð24Þ

Equation (23) suggests that it may be possible to con-

trol the temperature dependence (derivative) of the See-

beck coefficient (and thus control the Thomson

coefficient) through a control of the Fermi energy and

even its temperature dependence, say by doping.
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